Safe Work Practices

Repairing Disconnect
On Energized Bus

Reference: SWP-5.17

Page: 1 of 2

Date 12/21/2018

Revised:

1.0 PURPOSE

The purpose of this document is to outline the steps for work on the bottom side of a de-energized disconnect switch for maintenance, changing glass and/or changing parts (such as a blade) while keeping the top of the disconnects, bus or line side, energized.

2.0 SAFETY

- **2.1** Always use proper high voltage procedures, including personal protective equipment, when working near or around high voltage equipment or conductors.
- **2.2** Identification of bus voltage is imperative to determine the "MAD" zone.
- **2.3** All properly rated hot sticks will be wiped clean and inspected before use.
- 2.4 Review Insulating Protective Equipment (IPE; including hard cover) inspection and use under SWP 5.02.
- **2.5** The bus and disconnects should be visually inspected for defects before work commences.
- 2.6 Proper zone of red tag protection will be required per Section 6 of the Versant Power Safety Manual.

3.0 PROCEDURE

- 3.1 A formal risk assessment will be discussed and documented to identify hazards and barriers.
- **3.2** If working above bushings charged with SF6 gas, degassing of the breaker is mandatory.
- **3.3** The disconnect shall be opened (if possible) with the appropriate hot stick and rubber gloves. The load side of the disconnect shall be tested for the absence of voltage.
- **3.4** If the disconnect can't be opened due to a mechanical failure of the switch, a bus outage may need to be considered to open the disconnect. Once open, the bus may be re-energized.
- **3.5** The bus will be properly covered with the appropriate IPE, using hot sticks and rubber gloves, to mitigate the "MAD" zone.
- **3.6** If applicable, while the leads are de-energized, grounding studs will be installed.

4.0 CHANGING GLASS

- **4.1** The lead connected to the open disconnect shall be grounded.
- **4.2** Remove the blade from the cap of the insulator (grounds remain).
- **4.3** Remove the broken stand-off insulator and install new glass.

Safe Work Practices

Title:	Reference: SWP-5.17	Revision:
Repairing Disconnect On Energized Bus	Page: 2 of 2	
	Date: 12/21	1/2018
	Revised:	

- **4.4** Re-install grounded blade to new glass.
- **4.5** Don't fully torque bolts until adjustments are made.

5.0 DISCONNECT BLADE CHANGE

- **5.1** The lead connected to the open disconnect shall be grounded.
- **5.2** Remove the blade from the cap of the insulator (grounds remain).
- **5.3** Remove disconnect blade from the grounded lead and install the new disconnect blade onto grounded lead.
- **5.4** Re-install grounded blade onto insulator.
- **5.5** Don't fully torque bolts until adjustments are made.

6.0 MECHANICAL CONNECTOR CHANGE-OUT

- **6.1** The lead connected to the open disconnect shall be grounded.
- **6.2** Remove the mechanical connector from the bottom of the blade.
- **6.3** Connector may be removed from the grounded lead and a new connector installed.
- **6.4** With the bus covered with IPE and the grounded lead removed, the wire connection on the bottom of the disconnect may be wire brushed with rubber gloves.
- **6.5** Grounding of the disconnect blade is permitted when it can be accomplished.
- **6.5** Re-install grounded mechanical connector to the bottom of the disconnect blade.

7.0 DISCONNECT ADJUSTMENT (IF NECESSARY)

- **7.1** Remove grounds, IPE and clear red tags.
- 7.2 Request and install blue tags on disconnects to adjust.
- **7.3** Close disconnect to align.
- 7.4 Open disconnect and re-establish red tag zone.
- 7.5 Install IPE and grounds to torque disconnect bolts to proper value.

Developed by: Approved by: SWP Committee

Neil Lyons and Brian Gould

Stan Hartin, Neil Lyons, Ryan Fysh, Brian Gould